0845 450 6120

Data Science for the Hortonworks Data Platform

This course Provides instruction on the processes and practice of data science, including machine learning and natural language processing. Included are: tools and programming languages (Python, IPython, Mahout, Pig, NumPy, pandas, SciPy, Scikitlearn), the Natural Language Toolkit (NLTK), and Spark MLlib.

Target Audience
Architects, software developers, analysts and data scientists who need to apply data science and machine learning on Hadoop.

Special Notices

Please note: This course is delivered by accredited Hortonworks instructors. The syllabus includes specific use cases and examples to help illustrate and reinforce the theory and the functionality of the technology being explored. Where possible, the instructor will provide further examples and answer questions relevant to an individual delegates specific application of the technology. However, due to the complexity of the technology and the breadth of application across industries, this may not always be possible in the classroom environment.

Learning Objectives

  • Recognize use cases for data science on Hadoop
  • Describe the Hadoop and YARN architecture
  • Describe supervised and unsupervised learning differences
  • Use Mahout to run a machine learning algorithm on Hadoop
  • Describe the data science life cycle
  • Use Pig to transform and prepare data on Hadoop
  • Write a Python script
  • Describe options for running Python code on a Hadoop cluster
  • Write a Pig User-Defined Function in Python
  • Use Pig streaming on Hadoop with a Python script
  • Use machine learning algorithms
  • Describe use cases for Natural Language Processing (NLP)
  • Use the Natural Language Toolkit (NLTK)
  • Describe the components of a Spark application
  • Write a Spark application in Python
  • Run machine learning algorithms using Spark MLlib
  • Take data science into production

Pre-Requisites

Please note: Hortonworks courses are delivered using electronic courseware. for delegates attending remotely (Virtual classes or Attend from Anywhere) you must ensure that you have dual monitors or a single monitor plus tablet device. Dual monitors are required in order to allow you to view labs and lab instructions on separate screens.

Technical pre-requisites

Students must have experience with at least one programming or scripting language, knowledge in statistics and/or mathematics, and a basic understanding of big data and Hadoop principles. Students new to Hadoop are encouraged to attend the HDP Overview: Apache Hadoop Essentials course.

Course Content

Hands-On Content

  • Lab: Setting Up a Development Environment
  • Demo: Block Storage
  • Lab: Using HDFS Commands
  • Demo: MapReduce
  • Lab: Using Apache Mahout for Machine Learning
  • Demo: Apache Pig
  • Lab: Getting Started with Apache Pig
  • Lab: Exploring Data with Pig
  • Lab: Using the IPython Notebook
  • Demo: The NumPy Package
  • Demo: The pandas Library
  • Lab: Data Analysis with Python
  • Lab: Interpolating Data Points
  • Lab: Defining a Pig UDF in Python
  • Lab: Streaming Python with Pig
  • Demo: Classification with Scikit-Learn
  • Lab: Computing K-Nearest Neighbor
  • Lab: Generating a K-Means Clustering
  • Lab: POS Tagging Using a Decision Tree
  • Lab: Using NLTK for Natural Language Processing
  • Lab: Classifying Text using Naive Bayes
  • Lab: Using Spark Transformations and Actions
  • Lab Using Spark MLlib
  • Lab: Creating a Spam Classifier with MLlib
One Month
Two Months
Three Months
More than Three Months
PRINCE2 Foundation & Practitioner
MSP Foundation & Practitioner
APMP Certificate
ITIL Foundation
Scrum in One Day
Certified ScrumMaster
ISTQB Software Test Foundation
Microsoft Project
BCS Business Analysis Practice
Other - Please Specify Below

Virtual Classroom

Virtual classrooms provide all the benefits of attending a classroom course without the need to arrange travel and accomodation. Please note that virtual courses are attended in real-time, commencing on a specified date.

Virtual Course Dates

Our Customers Include